
Short Abstract — We present SpiCO, a novel modeling
language for systems biology. It is indeed a programming
language founded on the pi-calculus, a rigorous mathematical
framework. The SpiCO language offers several benefits to
model engineering, compared to the initial formalism. Its
elaboration was driven by two quantitative modeling studies.
The first focused on the molecular level of transcription
initiation at the lambda switch. A second dealt with the
general machinery of bacterial transcription and translation.
Dynamic model execution yields continuous time Markov
chains (CTMCs), or simulation trajectories via the Gillespie's
algorithm.

Keywords — modeling, programming language, gene
expression, gene regulation, concurrency, pi-calculus,
stochastic simulation, Gillespie algorithm.

I.REGULATORY DYNAMICS AS CONCURRENT COMPUTATION

uantitative modeling of gene regulatory dynamics
raises multiple challenges. Gene expression is

controlled by the orchestrated action of a multitude of
molecular actors. The view as a sequence of independents
phases has been obsoleted. Phases in the pathway from
gene to protein may initiate before the preceding has
completed [1-2]. The inherent control, coupling, and
interdependencies in genetic regulatory systems surpass the
expressiveness of many established modeling approaches.

Q

Biological researchers pioneered in resorting to methods
from computer science to represent the dynamics between
biomolecules [3]. They pointed out commonalities between
cellular networks and concurrent computational systems.
Concurrency is a key aspect of complex computational
systems, from operating systems, over distributed databases
to the Internet. Sophisticated control and dependencies
render these challenging to design, build, and maintain.

The pi-calculus is a widely accepted framework that
captures fundamental principles of concurrency through
minimal linguistic means, with a precise mathematical
meaning [4].

II.MODEL ENGINEERING IN THE SPICO LANGUAGE

We designed the SpiCO [5] language design based on our
experience from two modeling studies, that contributed
thorough quantitative models of bacterial gene expression
and regulation in the pi-calculus [6-7]. One strength of the
pi-calculus lies in formal investigation of miniature
systems, yet it poorly supports larger scale model design.
SpiCO seeks to bridge this methodological gap.

 1The Microsoft Research - University of Trento Centre for
Computational and Systems Biology, Italy. E-mail: kuttler@cosbi.eu

2LIFL, University of Lille, France. E-mail: lhoussai@lifl.fr
3INRIA, Lille, France. E-mail: niehhren@lifl.fr

A. Molecules as concurrent objects with multiple profiles
Concurrent objects are at the heart of SpiCO models,

representing individual molecules and their behavior. They
explicitly render alternative discrete states of molecules.
Each is ascribed a distinct profile,, in which the object
offers distinct interaction capabilities. Objects switch
profiles as a result of interaction with others and
information processing.

B. Model refinement and reuse
We apply established software engineering techniques to

re-use and refine existing SpiCO model components. A
simple module system permits the former, inheritance
relations between object classes the latter. These features
were not available in previous pi-calculus based modeling
approaches.

C. Quantitative interpretation of SpiCO models
SpiCO models map to continuous time Markov chains,

and yield stochastic simulation via Gillespie's algorithm
[8].

D. Case studies: bacterial gene expression and regulation
Our case studies pioneered in quantitative pi-calculus

modeling. The first deals with transcriptional regulation at
the genetic switch of bacteriophage lambda [6], the second
provides a generic model of unregulated bacterial gene
expression [7]. We thoroughly validated all predictions
against previous knowledge.

III.OUTLOOK

We wish to apply SpiCO to further cases in gene
expression and regulation, to advance its utility as a
predictive tool, and to ultimately contribute to better
quantitative understanding of regulatory dynamics. The
challenges encountered may well necessitate further
methodological advances.

REFERENCES

[1] G. Orphanides and D. Reinberg (2002): A unified theory of gene
expression. Cell 108:439-451.

[2] T. Maniatis and R. Need (2002): An extensive network of coupling
among gene expression machines. Nature 416:499

[3] A. Regev and E.Shapiro (2002), Nature 419:34.
[4] R. Milner (1999). The pi-calculus. Cambridge University Press.
[5] C. Kuttler, C. Lhoussaine, J. Niehren (2007). A stochastic pi-calculus

for concurrent objects. Proc Algebraic Biology 2007, Springer.
[6] C. Kuttler and J. Niehren (2006): Gene regulation in the pi-calculus:

simulating cooperativity at the lambda switch. Trans Comp Systems
Biology VII, Springer.

[7] C. Kuttler (2006): Simulating bacterial transcription and translation in
a stochastic pi-calculus. Trans Comp Systems Biology VI, Springer

[8] D.T. Gillespie (1976), Journal of Computational Physics 22, 404-434.

Dynamic models of bacterial gene expression in
the SpiCO language

Céline Kuttler1, Cédric Lhoussaine2, and Joachim Niehren3

mailto:two@place.gov

	I.Regulatory Dynamics as Concurrent Computation
	II.Model Engineering in the SpiCO Language
	A. Molecules as concurrent objects with multiple profiles
	B. Model refinement and reuse
	C. Quantitative interpretation of SpiCO models
	D. Case studies: bacterial gene expression and regulation

	III.Outlook

